Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(7): 3406-3414, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329423

RESUMO

The expression of P450 genes is regulated by trans-regulatory factors or cis-regulatory elements and influences how endogenous or xenobiotic substances are metabolized in an organism's tissues. In this study, we showed that overexpression of the cytochrome P450 gene, CYP6CY22, led to resistance to cyantraniliprole in Aphis gossypii. The expression of CYP6CY22 increased in the midgut and remaining carcass of the CyR strain, and after repressing the expression of CYP6CY22, the mortality of cotton aphids increased 2.08-fold after exposure to cyantraniliprole. Drosophila ectopically expressing CYP6CY22 exhibited tolerance to cyantraniliprole and cross-tolerance to xanthotoxin, quercetin, 2-tridecanone, tannic acid, and nicotine. Moreover, transcription factor CF2-II (XM_027994540.2) is transcribed only as the splicing variant isoform CF2-II-AS, which was found to be 504 nucleotides shorter than CF2-II in A. gossypii. RNAi and yeast one-hybrid (Y1H) results indicated that CF2-II-AS positively regulates CYP6CY22 and binds to cis-acting element p (-851/-842) of CYP6CY22 to regulate its overexpression. The above results indicated that CYP6CY22 was regulated by the splicing isoform CF2-II-AS, which will help us further understand the mechanism of transcriptional adaption of cross-tolerance between synthetic insecticides and plant secondary metabolites mediated by P450s.


Assuntos
Afídeos , Inseticidas , Polifenóis , Pirazóis , ortoaminobenzoatos , Animais , Processamento Alternativo , Afídeos/genética , Afídeos/metabolismo , Xenobióticos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Isoformas de Proteínas/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética
2.
Pestic Biochem Physiol ; 198: 105751, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225094

RESUMO

Abamectin, as a broad-spectrum bioinsecticide, has been widely used for the control of Lepidoptera insects, resulting in different levels of resistance to abamectin in Spodoptera litura. Cytochrome P450 monooxygenases (P450s) are known for their important roles in insecticide detoxification. In this study, the expression of SlCYP6B40, SlCYP4L12 and SlCYP9A32 in the fat body, and SlCYP4S9, SlCYP6AB12, SlCYP6AB58, SlCYP9A75a and SlCYP9A75b in Malpighian tubules was found to be significantly upregulated after abamectin exposure. SlCYP6AE44 and SlCYP6AN4 were simultaneously upregulated in these two tissues after abamectin exposure. Ectopically overexpressed SlCYP6AE44, SlCYP9A32 and SlCYP4S9 in transgenic Drosophila conferred tolerance to abamectin. In addition, homology modeling and molecular docking results suggested that SlCYP6AE44, SlCYP9A32 and SlCYP4S9 may be capable of binding with abamectin. These results demonstrate that upregulation of CYP3 and CYP4 genes may contribute to abamectin detoxification in S. litura and provide information for evidence-based insecticide resistance management strategies.


Assuntos
Inseticidas , Ivermectina/análogos & derivados , Túbulos de Malpighi , Animais , Spodoptera/genética , Spodoptera/metabolismo , Túbulos de Malpighi/metabolismo , Corpo Adiposo , Simulação de Acoplamento Molecular , Inseticidas/farmacologia , Inseticidas/metabolismo , Larva/genética
4.
Int J Biol Macromol ; 253(Pt 2): 126765, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37683749

RESUMO

Clarifying the molecular mechanisms of cotton aphid resistance to various insecticides is crucial for the long-term safe application of insecticides in chemical control. ATP-binding cassette (ABC) transporters mediate the membrane transport of various substrates (including exogenous substances). Experiments confirmed that ABCB5, ABCF2, and MRP12 contributed to high levels of resistance to spirotetramat, cyantraniliprole, thiamethoxam or imidacloprid. Binding sites of the C2H2 zinc finger transcription factor CF2-II was predicted to be located in the promoters of ABCB5, ABCF2, and MRP12. The expression levels of ABCB5, ABCF2, and MRP12 were significantly upregulated after silencing CF2-II. The results of dual-luciferase reporter assays demonstrated a negative regulatory relationship between CF2-II and ABC transporter promoters. Furthermore, yeast one-hybrid (Y1H) and electrophoresis mobility shift assays (EMSAs) revealed that CF2-II inhibited the expression of ABC transporter genes through interaction with binding sites [ABCF2.p (-1149/-1140) or MRP12.p (-1189/-1181)]. The above results indicated that ABCB5, ABCF2, and MRP12 were negatively regulated by the transcription factor CF2-II, which will help us further understand the mechanism of transcriptional adaption of multi-insecticides resistant related ABC transporters in response to xenobiotics.


Assuntos
Afídeos , Dedos de Zinco CYS2-HIS2 , Inseticidas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fatores de Transcrição/metabolismo , Afídeos/genética , Protrombina/metabolismo
5.
Int J Biol Macromol ; 253(Pt 3): 126824, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690634

RESUMO

Cytochrome P450-mediated metabolism is an important mechanism of insecticide resistance, most studies show upregulated transcript levels of P450s in resistant insect strains. Our previous studies illustrated that some upregulated P450s were associated with cyantraniliprole resistance, and it is more comprehensive to use the tissue specificity of transcriptomes to compare resistant (CyR) and susceptible (SS) strains. In this study, the expression profiles of P450s in a CyR strain compared with a SS strain in remaining carcass or midgut were investigated by RNA sequencing, and candidate genes were selected for functional study. Drosophila melanogaster bioassays suggested that ectopic overexpression of CYP4CK1, CYP6CY5, CYP6CY9, CYP6CY19, CYP6CZ1 and CYP6DA1 in flies was sufficient to confer cyantraniliprole resistance, among which CYP6DA1 was the predominant contributor to resistance (12.24-fold). RNAi suppression of CYP4CK1, CYP6CY5, CYP6CY9 and CYP6DA1 significantly increased CyR aphid sensitivity to cyantraniliprole. The CYP6DA1 promoter had two predicted binding sites for crocodile (CROC), an intron-free ORF with bidirectional transcription yielding CROC (+) and CROC (-). Y1H, RNAi and EMSA found that CROC (-) was a transcription factor directly regulating CYP6DA1 expression. In conclusion, P450 genes contribute to cyantraniliprole resistance, and the transcription factor CROC (-) regulates the expression of CYP6DA1 in A. gossypii.


Assuntos
Jacarés e Crocodilos , Afídeos , Inseticidas , Animais , Inseticidas/metabolismo , Jacarés e Crocodilos/metabolismo , Afídeos/genética , Drosophila melanogaster/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Transcrição/metabolismo
6.
J Agric Food Chem ; 71(40): 14517-14526, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773746

RESUMO

Cytochrome P450 plays vital roles in detoxifying xenobiotics. In this study, SlCYP340A and SlCYP340L expression in the Spodoptera litura fat body and SlCYP332A1, SlCYP6AB12, SlCYP6AB58, SlCYP6AB59, and SlCYP6AN4 expression in the Malpighian tubules were significantly upregulated after cyantraniliprole exposure, and SlCYP6AB58 and SlCYP6AB59 expression levels were simultaneously increased in the Malpighian tubules after gossypol treatment. Drosophila ectopically expressing candidate P450 genes showed that SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A conferred cyantraniliprole tolerance. The overexpression of SlCYP6AB58 and SlCYP6AB59 in Drosophila increased the number of eggs laid under the gossypol treatment. Moreover, the knockdown of SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A increased S. litura mortality under the cyantraniliprole treatment. Homology modeling and molecular docking results suggested that candidate P450 has the potential to bind with cyantraniliprole. These results indicate that the CYP3 and CYP4 genes participate in cyantraniliprole detoxification and that SlCYP6AB59 may be simultaneously involved in the gossypol tolerance of S. litura.


Assuntos
Gossipol , Inseticidas , Animais , Spodoptera/genética , Spodoptera/metabolismo , Túbulos de Malpighi/metabolismo , Corpo Adiposo/metabolismo , Simulação de Acoplamento Molecular , Xenobióticos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila/metabolismo , Larva/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo
7.
J Agric Food Chem ; 71(23): 8834-8845, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256355

RESUMO

Afidopyropen is a novel biogenic pesticide widely applied to control sap-feeding pests, and a few studies have evaluated the side effects of afidopyropen on pollinators, excluding the Asian honeybee. Thus, we estimated the physiological influences of afidopyropen in Apis cerana, which could cause significant death and nutritional deficiency in bees after continuous dietary intake (14 days) at the field recommended dose. Moreover, we found afidopyropen ingestion-induced changes in the activity of detoxification enzymes (AChE, GR, CarE) and expression of genes critical for the central nervous system and chemosensory function in the antennae, brain, midgut, and malpighian tubule of exposed bees. However, there was no evidence that there was a long-term impact on foraging activity when observing foragers treated with apfidopyropen as newly emerged workers. Overall, our study provides vital information to improve bee health, which will improve outcomes for beekeepers, increase pollination services, and strengthen pollinator communities.


Assuntos
Perfilação da Expressão Gênica , Inseticidas , Abelhas/genética , Animais , Inseticidas/toxicidade , Lactonas , Compostos Heterocíclicos de 4 ou mais Anéis
8.
J Agric Food Chem ; 71(10): 4281-4291, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36877657

RESUMO

Insecticides tolerance in herbivorous arthropods is associated with preadaptation to host plant allelochemicals. However, how plant secondary metabolites activate detoxifying metabolic genes to develop tolerance remains unclear. Herein, the tolerance of Spodoptera litura larvae to cyantraniliprole was increased after nicotine exposure. An S. litura α esterase, SlCOE030, was predominantly expressed in the midgut and induced after exposure to cyantraniliprole, nicotine, and cyantraniliprole plus nicotine. Drosophila melanogaster with ectopically overexpressed SlCOE030 enhanced cyantraniliprole and nicotine tolerance by 4.91- and 2.12-fold, respectively. Compared to UAS-SlCOE030 and Esg-GAL4 lines, the Esg > SlCOE030 line laid more eggs after nicotine exposure. SlCOE030 knockdown decreased the sensitivity of nicotine-treated S. litura larvae to cyantraniliprole. Metabolism assays indicated that recombinant SlCOE030 protein metabolizes cyantraniliprole. Homology modeling and molecular docking analysis demonstrated that SlCOE030 exhibits effective affinities for cyantraniliprole and nicotine. Thus, insect CarEs may result in the development of cross-tolerance between synthetic insecticides and plant secondary metabolites.


Assuntos
Inseticidas , Animais , Inseticidas/farmacologia , Nicotina/farmacologia , Spodoptera , Carboxilesterase/genética , Drosophila melanogaster , Simulação de Acoplamento Molecular , Larva/genética
9.
Pestic Biochem Physiol ; 188: 105264, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464369

RESUMO

The ATP-binding cassette (ABC) transporters C and G subfamilies have been reported to be involved in insecticide detoxification, with most studies showing increased gene transcript levels in response to insecticide exposure. Our previous studies have suggested that ABCC and G transporters participate in cyantraniliprole and thiamethoxam resistance of Aphis gossypii. In this study, we focused on the potential roles of the ABCC and G transporters of an A. gossypii field population (SDR) in neonicotinoid detoxification. The results of leaf dip bioassays showed 629.17- and 346.82-fold greater resistance to thiamethoxam and imidacloprid in the SDR strain, respectively, than in the susceptible strain (SS). Verapamil, an ABC inhibitor, was used for synergism bioassays, and the results showed synergistic effects with thiamethoxam, with synergistic ratios (SRs) of 2.07 and 6.68 in the SS and SDR strains, respectively. In addition to thiamethoxam, verapamil increased imidacloprid toxicity by 1.68- and 1.62-fold in the SS and SDR strains respectively. Then, the expression levels of several ABCC and G transporters were analyzed in different treatments. We found that the transcript levels of AgABCG4, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 were higher in the SDR strain than in the SS strain. The mRNA expression of AgABCG4, AgABCG7, AgABCG13, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 in the SDR strain was increased after thiamethoxam and imidacloprid exposure. The results of transgenic Drosophila melanogaster bioassays suggested that overexpression of AgABCG4, AgABCG7, AgABCG13, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 in transgenic flies was sufficient to confer thiamethoxam and imidacloprid resistance, and AgABCG4, AgABCG7, AgABCG13, AgABCG26 and AgMRP12 may be related to α-cypermethrin cross-resistance with weak effects. In addition, the knockdown of AgABCG4, AgABCG13, AgABCG26, AgMRP8 and AgMRP12, and the knockdown of AgABCG7 and AgABCG26 increased thiamethoxam and imidacloprid mortality in the SDR strain, respectively. Our results suggest that changes in the expression levels of ABCC and G transporters may contribute to neonicotinoid detoxification in the SDR strain, and provide a foundation for clarify the potential roles of ABCC and G transporters in insecticide resistance.


Assuntos
Afídeos , Inseticidas , Animais , Tiametoxam , Transportadores de Cassetes de Ligação de ATP/genética , Inseticidas/toxicidade , Drosophila melanogaster/genética , Neonicotinoides/farmacologia , Verapamil/farmacologia
10.
J Agric Food Chem ; 70(41): 13132-13142, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194468

RESUMO

ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates to extracellular transporting, which play an important role in the detoxification process in arthropods. Here, we described a comprehensive approach to explore the involvement of ABC transporters in spirotetramat resistance in cotton aphids. In this study, synergism bioassays showed 17.05% and 35.42% increases in the toxicity to spirotetramat with the ABC inhibitor verapamil in adult and 3rd instar nymph aphids of the SR strain, respectively. In a competitive assay based on the microinjection of a fluorescent ABC transporter substrate, verapamil (a general ABC inhibitor) and spirotetramat significantly inhibited the elimination of Texas Red. Based on transcriptome data of midguts of spirotetramat-susceptible (SS) and -resistant (SR) strains, the expression levels of ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were significantly upregulated in the SR strain midgut compared to that of the SS strain. Gene functional analysis based on ectopic expression and RNA interference (RNAi) proved that ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were involved in the tolerance of cotton aphids to spirotetramat. Moreover, the upregulated ABCF2, ABCB4, and ABCB5 in the midgut of the SR strain contributed more to the resistance of spirotetramat in in vitro functional analysis. In summary, these results demonstrate that candidate ABC transporter genes in the midgut tissue were involved in spirotetramat resistance, which will help reveal the relationship between ABC transporters and the development of spirotetramat resistance in field populations.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Resistência a Inseticidas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Inseticidas/farmacologia , Verapamil , Trifosfato de Adenosina
11.
J Agric Food Chem ; 70(45): 14339-14351, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36165284

RESUMO

Field populations of Aphis gossypii (SDR) have evolved high resistance to neonicotinoids, including thiamethoxam and imidacloprid. Synergism bioassays and transcriptomic comparison of the SDR and susceptible (SS) strains revealed that the cytochrome P450s may contribute to the neonicotinoid resistance evolution. The transcripts of some P450s were constitutively overexpressed in the SDR strain, and many genes showed expression plasticity under insecticide exposure. Drosophila that ectopically expressed CYPC6Y9, CYP4CK1, CYP6DB1, and CYP6CZ1 showed greater resistance (>8.0-fold) to thiamethoxam, and Drosophila that expressed CYPC6Y9, CYP6CY22, CYP6CY18, and CYP6D subfamily genes showed greater resistance (>5-fold) to imidacloprid. Five P450 genes that caused thiamethoxam resistance also conferred resistance to α-cypermethrin. Furthermore, the knockdown of CYP4CK1, CYP6CY9, CYP6CY18, CYPC6Y22, CYP6CZ1, and CYP6DB1 dramatically increased the sensitivity of the SDR strain to thiamethoxam or imidacloprid. These results indicate the involvement of multiple P450 genes, rather than one key gene, in neonicotinoid resistance in field populations.


Assuntos
Afídeos , Inseticidas , Animais , Tiametoxam , Resistência a Inseticidas/genética , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Afídeos/genética , Afídeos/metabolismo , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila
12.
Pestic Biochem Physiol ; 184: 105076, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715031

RESUMO

Chemosensory proteins (CSPs) are a class of small transporter proteins expressed only in arthropods with various functions beyond chemoreception. Previous studies have been reported that CSPs are involved in the insecticide resistance. In this study, we found that AgoCSP1, AgoCSP4, and AgoCSP5 were constitutively overexpressed in an insecticide-resistant strain of Aphis gossypii and showed higher expression in broad body tissue (including fat bodies) than in the midgut but without tissue specificity. However, the function of these three upregulated AgoCSPs remains unknown. Here, we investigated the function of AgoCSPs in resistance to the diamide insecticide cyantraniliprole. Suppression of AgoCSP1, AgoCSP4 and AgoCSP5 transcription by RNAi significantly increased the sensitivity of resistant aphids to cyantraniliprole. Molecular docking and competitive binding assays indicated that these AgoCSPs bind moderate with cyantraniliprole. Transgenic Drosophila melanogaster expressing these AgoCSPs in the broad body or midgut showed higher tolerance to cyantraniliprole than control flies with the same genetic background; AgoCSP4 was more effective in broad body tissue, and AgoCSP1 and AgoCSP5 were more effective in the midgut, indicating that broad body and midgut tissues may be involved in the insecticide resistance mediated by the AgoCSPs examined. The present results strongly indicate that AgoCSPs participate in xenobiotic detoxification by sequestering and masking toxic insecticide molecules, providing insights into new factors involved in resistance development in A. gossypii.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Diamida , Drosophila melanogaster , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Pirazóis , ortoaminobenzoatos
13.
Pestic Biochem Physiol ; 184: 105104, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715043

RESUMO

Cyantraniliprole, a second-generation anthranilic diamide insecticide, is widely used to control chewing and sucking pests. ATP-binding cassette transporters (ABCs) are a ubiquitous family of membrane proteins that play important roles in insect detoxification mechanisms. However, the potential effects of ABCs on cyantraniliprole-resistance remain unclear. In the present study, synergism bioassays revealed that verapamil, an ABC inhibitor, increased the toxicity of cyantraniliprole by 2.00- and 12.25-fold in the susceptible and cyantraniliprole-resistant strains of Aphis gossypii. Based on transcriptome data, the expression levels of ABCB4, ABCB5, ABCD1, ABCG4, ABCG7, ABCG13, ABCG16, ABCG17, ABCG26 and MRP12 were upregulated 1.56-, 1.32-, 1.51-, 2.03-, 1.65-, 1.50-, 4.18-, 6.07-, 4.68- and 4.69-fold, respectively, in the cyantraniliprole-resistant strain (CyR) compared to the susceptible strain (SS), as determined using RT-qPCR. Drosophila melanogaster ectopically overexpressing ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 exhibited significantly increased tolerance to cyantraniliprole by 11.71-, 2.39-, 4.85-, 2.06-, 3.75-, 4.20- and 3.50-fold, respectively, with ABCB5 and ABCG family members being the most effective. Furthermore, the suppression of ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 significantly increased the sensitivity of the CyR strain to cyantraniliprole. These results indicate that ABCs may play crucial roles in cyantraniliprole resistance and may provide information for shaping resistance management strategies.


Assuntos
Afídeos , Inseticidas , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Drosophila melanogaster/metabolismo , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Pirazóis , ortoaminobenzoatos/farmacologia
14.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216472

RESUMO

Chemosensory proteins (CSPs) are a class of transporters in arthropods. Deeper research on CSPs showed that CSPs may be involved in some physiological processes beyond chemoreception, such as insect resistance to pesticides. We identified two upregulated CSPs in two resistant strains of Aphis gossypii Glover. To understand their role in the resistance of aphids to pesticides, we performed the functional verification of CSP1 and CSP4 in vivo and in vitro. Results showed that the sensitivity of the thiamethoxam-resistant strain to thiamethoxam increased significantly with the silencing of CSP1 and CSP4 by RNAi (RNA interference), and the sensitivity of the spirotetramat-resistant strain to spirotetramat increased significantly with the silencing of CSP4. Transgenic Drosophila melanogaster expressing CSPs exhibited stronger resistance to thiamethoxam, spirotetramat, and alpha-cypermethrin than the control did. In the bioassay of transgenic Drosophila, CSPs showed different tolerance mechanisms for different pesticides, and the overexpressed CSPs may play a role in processes other than resistance to pesticides. In brief, the present results prove that CSPs are related to the resistance of cotton aphids to insecticides.


Assuntos
Afídeos/metabolismo , Compostos Aza/metabolismo , Resistência a Inseticidas , Proteínas de Membrana Transportadoras/metabolismo , Compostos de Espiro/metabolismo , Tiametoxam/metabolismo , Animais , Animais Geneticamente Modificados , Afídeos/efeitos dos fármacos , Afídeos/fisiologia , Drosophila melanogaster/genética , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo
15.
Pest Manag Sci ; 78(5): 1982-1991, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35092151

RESUMO

BACKGROUND: Spirotetramat is a tetramic acid derivative insecticide with novel modes of action for controlling Aphis gossypii Glover in the field. Previous studies have shown that long noncoding RNAs (lncRNAs) and cytochrome P450 monooxygenases (P450s) are involved in the detoxification process. However, the functions of lncRNAs in regulating P450 gene expression in spirotetramat resistance in A. gossypii are unknown. RESULTS: In this study, we found CYP4CJ1, CYP6CY7 and CYP6CY21 expression levels to be significantly upregulated in a spirotetramat-resistant (SR) strain compared with a susceptible (SS) strain. Furthermore, knockdown of CYP4CJ1, CYP6CY7 and CYP6CY21 increased nymph and adult mortality in the SR strain following exposure to spirotetramat. Drosophila ectopically expressing CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 showed significantly decreased mortality after spirotetramat exposure, and CYP380C6, CYP4CJ1 and CYP6CY21 are putative targets of six lncRNAs. Silencing of lncRNAs MSTRG.36649.2/5 and MSTRG.71880.1 changed CYP6CY21 and CYP380C6 expression, altering the sensitivity of the SR strain to spirotetramat. Moreover, MSTRG.36649.2/5 did not compete for microRNA (miRNA) binding to regulate CYP6CY21 expression. CONCLUSION: Our results confirm that CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 are potentially involved in the development of spirotetramat resistance in A. gossypii, and MSTRG.36649.2/5 and MSTRG.71880.1 probably regulate CYP6CY21 and CYP380C6 expression other than through the "sponge effect" of competing for miRNA binding. Our results provide a favorable molecular basis for studying cotton aphid P450 genes and lncRNA functions in spirotetramat resistance development.


Assuntos
Afídeos , Inseticidas , MicroRNAs , RNA Longo não Codificante , Animais , Afídeos/genética , Afídeos/metabolismo , Compostos Aza , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Compostos de Espiro
16.
Pestic Biochem Physiol ; 179: 104972, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802522

RESUMO

Long non-coding RNAs (lncRNAs) represent the largest class of non-coding transcripts. They act a pivotal part in various insect developmental processes and stress responses. However, the investigation of lncRNA functions in insecticide resistant remains at an early phase. Herein, we conducted whole-transcriptome RNA sequencing for two cotton aphid (Aphis gossypii Glover) strains, i.e., insecticide-susceptible (SS) and spirotetramat-resistant (SR). We discovered 6059 lncRNAs in the RNA-Seq data, and 874 lncRNAs showed differential expression. In addition, 5 lncRNAs among 874 lncRNAs were predicted as targets of acetyl-CoA carboxylase (ACC). Reverse transcription real-time quantitative PCR (RT-qPCR) combined with RNA interference (RNAi) confirmed that selected ACC lncRNA was related to the expression of ACC. Moreover, we also identified two transcription factors, i.e., C/EBP and C/EBPzeta, that regulate the transcription level of ACC lncRNA. These results provide a good basis for the study of cotton aphid lncRNA functions in insecticide resistance development.


Assuntos
Afídeos , Compostos Aza , RNA Longo não Codificante , Acetil-CoA Carboxilase/genética , Animais , Afídeos/genética , Resistência a Inseticidas/genética , RNA Longo não Codificante/genética , Compostos de Espiro
17.
Pestic Biochem Physiol ; 176: 104879, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119222

RESUMO

Cytochrome P450 monooxygenases (P450s) and UDP-glycosyltransferases (UGTs) are major detoxifying enzymes that metabolize plant toxins and insecticides. In the present study, the synergists of piperonyl butoxide, sulfinpyrazone and 5-nitrouracil significantly increased cyantraniliprole and α-cypermethrin toxicity against the resistant strain. The transcripts of UGT341A4, UGT344B4, UGT344D6, UGT344J2 and UGT344M2 increased significantly in the CyR strain compared with the susceptible strain. Among these upregulated genes (including P450s), CYP6CY7 and UGT344B4 were highly expressed in the midgut. Transgenic expression of the P450 and UGT genes in broad body tissues in Drosophila melanogaster indicated that the expression of CYP380C6, CYP4CJ1, UGT341A4, UGT344B4 and UGT344M2 is sufficient to confer cyantraniliprole resistance, and CYP380C6, CYP6CY7, CYP6CY21, UGT341A4 and UGT344M2 are related to α-cypermethrin cross-resistance. The midgut-specific overexpression of CYP380C6, CYP6CY7, CYP6CY21, CYP4CJ1, UGT341A4, UGT344B4 and UGT344M2 significantly increased insensitivity to cyantraniliprole, and CYP380C6, CYP6CY7, CYP6CY21, UGT344B4 and UGT344M2 confer α-cypermethrin cross-resistance. The expression of CYP380C6, CYP4CJ1, UGT341A4 and UGT344M2 in broad tissues or in midgut has similar effects on insensitivity to insecticides; however, CYP6CY7, CYP6CY21 and UGT344B4 are more effective in the midgut. This result indicates that broad body tissues and midgut tissue are involved in insecticide resistance mediated by the candidate P450s and UGTs examined.


Assuntos
Inseticidas , Difosfato de Uridina , Animais , Sistema Enzimático do Citocromo P-450/genética , Drosophila melanogaster , Glicosiltransferases/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Pirazóis , ortoaminobenzoatos
18.
J Agric Food Chem ; 69(21): 5849-5857, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34014075

RESUMO

Cyantraniliprole targets the ryanodine receptor and shows cross-spectrum activity against a broad range of chewing and sucking pests. In this study, a cyantraniliprole-resistant cotton aphid strain (CyR) developed resistance 17.30-fold higher than that of a susceptible (SS) strain. Bioassay results indicated that CyR developed increased cross-resistance to cyfluthrin, α-cypermethrin, imidacloprid, and acephate. In CyR, piperonyl butoxide synergistically increased the toxicity of cyantraniliprole, α-cypermethrin, and cyfluthrin. The cytochrome P450 activities in the CyR strain were significantly higher than those in the SS strain. The mRNA expression of CYP6CY7, CYP6CY12, CYP6CY21, CYP6CZ1, CYP6DA1, and CYP6DC1 in the CYP3 clade, and CYP380C6, CYP380C12, CYP380C44, CYP4CJ1, and CYP4CJ5 in the CYP4 clade, was significantly higher in CyR than in SS. The depletion of the most abundant CYP380C6 transcript by RNAi also significantly increased the sensitivity of CyR to cyantraniliprole. Transgenic expression of CYP380C6, CYP6CY7, CYP6CY21, and CYP4CJ1 in Drosophila melanogaster suggested that the expression of CYP380C6 and CYP4CJ1 was sufficient to confer cyantraniliprole resistance, with CYP380C6 being the most effective, and that CYP380C6, CYP6CY7, and CYP6CY21 were related to α-cypermethrin cross-resistance. These results indicate the involvement of P450 genes in cyantraniliprole resistance and pyrethroid cross-resistance and provide an overall view of the metabolic factors involved in resistance development.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Diamida , Drosophila melanogaster , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Pirazóis , Medição de Risco , ortoaminobenzoatos
19.
Pestic Biochem Physiol ; 167: 104558, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32527432

RESUMO

ATP-binding cassette (ABC) transporters represent the largest known group of efflux pumps, utilizing ATP to translocate a broad spectrum of substrates across lipid membranes, which play an important role in phase III of the detoxification process. The presence of ABC transporters and their potential association with insecticide resistance have not been investigated in Aphis gossypii, one of the most economically important agricultural pests worldwide. In this study, the ABC transporter inhibitor-verapamil significantly increased thiamethoxam toxicity against resistant cotton aphids, suggesting that ABCs are involved in thiamethoxam resistance. ABC transporter genes were identified using the A. gossypii genome database and transcriptome data. A total of 69 ABC transporters were identified and grouped into seven subfamilies (A-G), including 4 ABCAs, 5 ABCBs, 25 ABCCs, 2 ABCDs, 1 ABCE, 4 ABCFs and 30 ABCGs. Of these ABC transporters, 53 were predicted to be functional, 19 were full transporters, 30 were half-transporters and 4 had two NBDs. Subfamilies C and G accounted for 77% (32 and 45%, respectively) of the genes. The transcripts of 20 of 26 ABCs based on the transcriptome were upregulated, and ABCA1, ABCA2, ABCB1, ABCB4, ABCB8, ABCD1, ABCD2, ABCE1, ABCF1, ABCF3, ABCG7, ABCG15, ABCG17, ABCG24, ABCG27, ABCG30, MRP1, MRP7, MRP14 and MRP21 transcripts were significantly increased in the thiamethoxan resistant strain compared to the susceptible strain with qRT-PCR. The suppression of overexpressed ABCs (ABCA2, ABCD1, ABCD2, ABCE1 and ABCG15) significantly increased the thiamethoxam sensitivity of resistant aphids. These results suggest that ABC transporters might be involved in thiamethoxam resistance in A. gossypii and will facilitate further work to validate the functional roles of these ABCs in thiamethoxam resistance. These results are useful for understanding the multiple resistance mechanisms of thiamethoxam and the management of insecticide-resistant cotton aphids.


Assuntos
Afídeos , Inseticidas , Transportadores de Cassetes de Ligação de ATP , Animais , Resistência a Inseticidas , Tiametoxam
20.
Pestic Biochem Physiol ; 166: 104565, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448419

RESUMO

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic endogenous and exogenous compounds with sugars to produce water-soluble glycosides, playing an important role in insect endobiotic regulation and xenobiotic detoxification. In this study, two UGT-inhibitors, sulfinpyrazone and 5-nitrouracil, significantly increased spirotetramat toxicity against third instar nymphs of resistant Aphis gossypii, whereas there were no synergistic effects in apterous adult aphids, suggesting UGT involvement in spirotetramat resistance in cotton aphids. Furthermore, the UHPLC-MS/MS was employed to determine the content of spirotetramat and its four metabolites (S-enol, S-glu, S-mono, S-keto) in the honeydew of resistant cotton aphids under spirotetramat treatment. No residual spirotetramat was detected in the honeydew, while its four metabolites were detected at a S-enol: S-glu: S-mono: S-keto ratio of 69.30: 6.54: 1.44: 1.00. Therefore, glycoxidation plays a major role in spirotetramat inactivation and excretion in resistant aphids. Compared with the susceptible strain, the transcriptional levels of UGT344M2 were significantly upregulated in nymphs and adults of the resistant strain. RNA interference of UGT344M2 dramatically increased spirotetramat toxicity in nymphs, but no such effect were found in the resistant adult aphids. Overall, UGT-mediated glycoxidation were found to be involved in spirotetramat resistance. The suppression of UGT344M2 significantly increased the sensitivity of resistant nymphs to spirotetramat, suggesting that UGT344M2 upregulation might be associated with spirotetramat detoxification. This study provides an overview of the involvement of metabolic factors, UGTs, in the development of spirotetramat resistance.


Assuntos
Afídeos , Inseticidas , Animais , Compostos Aza , Glicosiltransferases , Resistência a Inseticidas , Compostos de Espiro , Espectrometria de Massas em Tandem , Difosfato de Uridina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...